
Trelliscope: A System for Detailed Visualization

in the Deep Analysis of Large Complex Data

Ryan Hafen∗

Pacific Northwest National Lab

Luke Gosink

Pacific Northwest National Lab

Jason McDermott

Pacific Northwest National Lab

Karin Rodland

Pacific Northwest National Lab

Kerstin Kleese-Van Dam

Pacific Northwest National Lab

William S. Cleveland

Purdue University

Figure 1: Screenshot of the Trelliscope viewer showing a display created during analysis of high intensity physics data. In the configuration shown, 6 panels are

displayed per screen, which are sorted and filtered according the parameters specified in the cognostics pane.

ABSTRACT

Trelliscope emanates from the Trellis Display framework for visu-
alization and the Divide and Recombine (D&R) approach to ana-
lyzing large complex data. In Trellis, the data are broken up into
subsets, a visualization method is applied to each subset, and the
display result is an array of panels, one per subset. This is a pow-
erful framework for visualization of data, both small and large. In
D&R, the data are broken up into subsets, and any analytic method
from statistics and machine learning is applied to each subset inde-
pendently. Then the outputs are recombined. This provides not only
a powerful framework for analysis, but also feasible and practical
computations using distributed computational facilities. It enables
deep analysis of the data: study of both data summaries as well as
the detailed data at their finest granularity. This is critical to full
understanding of the data. It also enables the analyst to program
using an interactive high-level language for data analysis such as R,
which allows the analyst to focus more on the data and less on code.
In this paper we introduce Trelliscope, a system that scales Trellis
to large complex data. It provides a way to create displays with a
very large number of panels and an interactive viewer that allows
the analyst to sort, filter, and sample the panels in a meaningful way.
We discuss the underlying principles, design, and scalable architec-
ture of Trelliscope, and illustrate its use on three analysis projects in
proteomics, high intensity physics, and power systems engineering.

Index Terms: G.3 [Mathematics of Computing]: Probability and

∗e-mail: ryan.hafen@pnnl.gov

Statistics—Statistical Computing; H.2.m [Database Management]:
Database Applications—Data mining

1 INTRODUCTION

The Trellis visualization framework [2] provides an effective ap-
proach to detailed visualization of complex data. It has been widely
used for data analysis as a way to meaningfully visualize both sum-
mary and detailed data. Currently, the most used implementation is
the R package, Lattice [17].

In Trellis Display, the data are divided into subsets based on con-
ditioning variables, and a plotting method is applied to each subset.
The resulting plot for each subset is displayed on a “panel”. Cur-
rent Trellis implementations render the panels on a single display
that takes the form of a three-dimensional array with rows, columns,
and “pages”. The whole process is controlled by a number of dis-
play methods that can be simply specified by the user. Implemen-
tations have provided a programming capability using the graphics
language of the system that allows a user to specify almost any vi-
sualization method as the panel method. All of this enables a user
to uncover the structure of data even when the structure is quite
complicated. Trellis Display is discussed in Section 2.

Like all other analytic methods for data analysis, Trellis Display
becomes difficult to use effectively for large complex data. There
are two problems: (1) how to efficiently generate and organize a
large number of panels; and (2) how to view and interact with many
panels.

Trelliscope is an extension of Trellis that solves these problems.
The extensions are described in Section 3. Problem (1) is solved
by employing the Divide and Recombine (D&R) approach to large
complex data, which is discussed in Section 3.1. Problem (2) is
solved by making methods of sampling subsets a part of Trellis-
cope. We describe sampling and the use of “cognostics” in Section

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Trelliscope: A System for Detailed Visualization in the Deep Analysis of
Large Complex Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Pacific Northwest National Laboratory,902 Battelle
Boulevard,Richland,WA,99352

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Trelliscope emanates from the Trellis Display framework for visualization and the Divide and Recombine
(D&R) approach to analyzing large complex data. In Trellis, the data are broken up into subsets, a
visualization method is applied to each subset, and the display result is an array of panels, one per subset.
This is a powerful framework for visualization of data, both small and large. In D&R, the data are broken
up into subsets, and any analytic method from statistics and machine learning is applied to each subset
independently. Then the outputs are recombined. This provides not only a powerful framework for
analysis, but also feasible and practical computations using distributed computational facilities. It enables
deep analysis of the data: study of both data summaries as well as the detailed data at their finest
granularity. This is critical to full understanding of the data. It also enables the analyst to program using
an interactive high-level language for data analysis such as R which allows the analyst to focus more on the
data and less on code. In this paper we introduce Trelliscope, a system that scales Trellis to large complex
data. It provides a way to create displays with a very large number of panels and an interactive viewer that
allows the analyst to sort, filter, and sample the panels in a meaningful way. We discuss the underlying
principles, design, and scalable architecture of Trelliscope, and illustrate its use on three analysis projects
in proteomics, high intensity physics, and power systems engineering.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3.2. Then, Section 4 introduces the design and implementation of
Trelliscope. Section 5 illustrates its usage in three applications.

2 TRELLIS DISPLAY

Divide and Recombine (D&R), Trellis Display, and Trelliscope all
have as a fundamental aspect a division of data into subsets, and
then a recombination. We begin with an illustration of division and
Trellis Display with a very small dataset.

Figure 2 is a Trellis Display of data from a 1930s experiment at
the Minnesota Agricultural Experiment Station. At 6 sites, 10 va-
rieties of barley were grown in each of 2 years. The data collected
for the experiment are the yields for all combinations of the three
factors — site, variety, and year — so there are 120 observations.
In the figure, there are two conditioning variables: site and year.
Site has 6 values and year has 2, so there are 12 combinations of
site and year. The data are divided into 12 subsets by the 12 com-
binations. The visualization analytic method applied to each subset
is a dotplot. Each panel of the display is this dotplot for one subset.

This Trellis display allows us to study the the dependence of
yield on variety conditional on site and year, and how the relation-
ship changes with the values of the conditioning variables. This
turns out to be an exceptionally powerful mechanism for analysis
of data, both small and large. Often, a number of Trellis displays
are made with different conditioning variables; for example, we can
plot yield and site given variety and year.

The barley data demonstrate the power of D&R. They were pub-
lished by R. A. Fisher in his book, Statistical Methods for Research
Workers, and through the decades became a canonical dataset used
to illustrate many new numerical statistical methods. Despite the
many re-analyses through time, it was not until the use of Trellis
Display in their analysis 60 years later that a major error in the re-
ported data was discovered [6]. This display gives a first clue, an
anomaly at Morris.

yield

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisc. 38
Trebi

20 30 40 50 60

Grand RapidsGrand Rapids

19321932

DuluthDuluth

19321932

20 30 40 50 60

Univ. FarmUniv. Farm

19321932

MorrisMorris

19321932

20 30 40 50 60

CrookstonCrookston

19321932

WasecaWaseca

19321932
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisc. 38
Trebi

Grand RapidsGrand Rapids

19311931

20 30 40 50 60

DuluthDuluth

19311931

Univ. FarmUniv. Farm

19311931

20 30 40 50 60

MorrisMorris

19311931

CrookstonCrookston

19311931

20 30 40 50 60

WasecaWaseca

19311931

Figure 2: A Trellis display of the barley data.

There are many visualization methods that are employed to en-
hance the effectiveness of Trellis Display. While these choices are
largely up to the user to specify, a good Trellis implementation will
provide mechanisms to specify and explore these choices with ease.
More details on these and other considerations can be found in [11]
and [2].

3 EXTENDING TRELLIS

Trelliscope extends Trellis Display to large complex data, enabling
the efficient generation of displays with a very large number of pan-
els that can be easily and effectively viewed. To achieve this we use
the Divide and Recombine (D&R) approach to large complex data
to generate the displays, and sampling of subsets to make the num-
ber of panels manageable.

3.1 Divide and Recombine

3.1.1 Introduction

Divide and Recombine (D&R) is a statistical approach to the anal-
ysis of large complex data [10]. The data are divided into subsets.
Analytic methods are applied to each of the subsets, and the outputs
of each method are recombined to form a result for the entire data.
This provides computational feasibility and practicality.

There are two categories of analytic methods: statistical meth-
ods (including machine learning methods), whose output is numeric
and categorical, and visualization methods, whose output is visual.
For a visualization method, the recombination is a visual display
that assembles the panels for viewing across subsets. For a statisti-
cal analytic method, the recombination results in numeric and cate-
gorical values. For example, suppose we carry out logistic linear re-
gression on subsets. The outputs are the estimates of the regression
coefficients, and statistical information about the estimates. The
recombination can be unweighted means of the subset coefficient
estimates, or means weighted by estimates of their variances.

The D&R division and recombination methods used for an an-
alytic method are critical to the success of the D&R result. We
seek “best” division and recombination methods that suit the anal-
ysis task at hand. In many cases, we are interested in studying the
behavior of individual subsets of the data partitioned by categorical
variables. An example is the visualization of the barley data, where
each subset is determined by the year and site. Divisions can also
be chosen such that each subset is a random partition of the data,
where each subset can be thought of as an experiment. With such
divisions, in many cases we can obtain analytic recombination re-
sults that serve as approximations that are very close or exactly the
same as what we could have gotten had we been able to apply the
analytic method to all of the data directly.

3.1.2 Two Goals

One goal for D&R is deep analysis of large complex data: detailed,
comprehensive analysis that does not lose important information in
the data. Deep analysis requires visualization of the data at their
finest granularity, not just visualization of summaries. This was
established in the 1960s by the pioneers of data visualization for
model building such as John Tukey, Frank Anscombe, Cuthbert
Daniel, and George Box. We can do this with small data. For large
complex data, should we wave the white flag, surrendering to the
size and complexity, and visualize just summaries? Would that not
be a step backward? Large complex data should not get a pass.

A second goal is the analyst being able to use a well-designed
interactive language for data analysis. This can reduce substantially
the time an analyst spends programming with the data compared
with using a lower-level language. There is a very clear metric: the
fraction of the time the analyst spends thinking about programming
versus the fraction of time spent thinking about the data. We seek
to minimize the former. The language also needs to be powerful,
allowing a tailoring of the analysis to the data. The language needs
to provide access to the 1000s of statistical and analytic methods
that exist today. R [15], does a very good job in efficiency for the
analyst, programming power, and accessing methods.

3.1.3 The Computational Environment

What makes D&R work is that the computations for the application
of an analytic method to the subsets can be run in parallel with no
communication among them. D&R can exploit parallel distributed
computational environments like Hadoop with its MapReduce com-
pute engine and Hadoop distributed file system. D&R makes it
feasible for a data analyst to apply almost any statistical or visual-
ization method to large complex data.

Of course, the data analyst does not want to program in Hadoop’s
native language, Java. RHIPE, the R and Hadoop Integrated
Programming Environment, enables the analyst to write Hadoop

MapReduce jobs completely in R [9]. RHIPE has two parts. A
core, written in R and Java, that communicates with Hadoop. The
second part is a prototype domain-specific language for D&R in R,
available as a package named datadr [13]. This software pro-
vides a simple interface for specifying division and recombination
methods. The datadr methods provide a layer on top of RHIPE,
allowing the analyst to only think in terms of meaningful division
and recombination methods, hiding the details of MapReduce from
the user. Also, datadr has been designed with the goal in mind of
linking to other computing and storage backends.

Trelliscope has been implemented in the the D&R computational
environment of R and datadr. There are a number of potential
backends. Thus far we have used RHIPE/Hadoop, which provides
for scaling to large complex data, efficiently creating Trelliscope
displays with many panels.

3.2 Sampling Panels with Cognostics

A natural approach to viewing many panels is simply scrolling
through all pages of panels tiled across a screen. This alone can
be very powerful, but can become unrealistic when the number of
panels is large. In our own applications, the number of subsets
range from thousands to millions.

Our approach to viewing a large number of panels in a mean-
ingful way is to compute metrics on the data being plotted in each
panel that identify interesting qualitative or quantitative attributes,
and then sample, filter, or sort the panels based on these metrics.
Here, we loosely refer to any such metric as a “cognostic”, a Tukey
term for “computer guiding diagnostics” [5].

What constitutes an “interesting attribute” of a subset? In most
cases, this is left up to the analyst to determine for the visualization
at hand. A cognostic metric is simply the result of any computation
the analyst can think of that exploits some behavior in the data be-
ing visualized. Examples are simple statistical metrics such as the
mean, standard deviation, quantiles, range, and number of observa-
tions. If a model fit is being plotted, a goodness-of-fit metric for the
model fit for the subset can be a meaningful cognostic. Other ex-
amples are the percentage of values exceeding some limit, number
of times a specific value is seen, difference between means of two
groups of data, etc.

There is no specific set of steps for specifying these types of
cognostics. Finding meaningful cognostics is typically an iterative
process. The analyst creates a panel plotting function, applies it to a
few subsets, studies the resulting plots, and determines a candidate
set of cognostics that might provide a meaningful space for navigat-
ing the collection of all panels. Then the analyst applies the panel
and cognostics function to all subsets and views the results.

Cognostics can also come from work in the interesting related
area of research on scatterplot diagnostics, or “scagnostics” [21].
Scagnostics are cognostics specifically for scatterplots in which al-
gorithms provide metrics for specific types of interesting behav-
ior, such as “outlying”, “skewed”, “clumpy”, “striated”, etc. [21].
These cognostic metrics have more of a flavor of the computer try-
ing to tell the analyst what is interesting in a scatterplot (probably
more true to what Tukey had in mind), as opposed to the analyst-
defined cognostics described previously.

Cognostics are specified and attached to a Trelliscope display
within the programming environment, as they require specification
of potentially complex algorithms to return the desired metrics. The
analyst provides a function that takes a subset of data as input and
returns a list of cognostic attributes. An example of how a display
is created along with the cognostics is shown in Section 4.

There are different ways cognostics can be used to interact with
the panels of a Trelliscope display. For very exploratory views of
the display, a panel viewer can present the set of cognostics to the
analyst and allow them to sort and filter the panels based on the
different cognostic attributes. This results in a “focused sampling”

of panels based on different metrics of interest. Our implementation
of such a Trelliscope viewer is described in Section 4.

In cases where we would like to conduct a more controlled study
of the panels of a large display, we can take representative samples
of panels based on distributions of cognostics. A representative
sample covers the joint region of values of a set of cognostic vari-
ables. In most cases the variables are known to have an effect, and
we seek to study their effect within the region of the multidimen-
sional space that they collectively occupy. For example, suppose
106 subsets have variable sample sizes n. Suppose from each sub-
set we get an estimate of a parameter, and 5000 bootstrap values of
the estimate to describe the sampling distribution of the estimator
for the subset. Suppose we want to study the normality of the boot-
strap distribution for each subset by a normal quantile plot, and how
it changes with n. Of course our expectation is that the estimator
gets closer to normal as n increases. We could check normality by
making normal quantile plots for 1000 subsets whose values of n on
the log scale are as close to equal as possible. Such representative
sampling could be specified either in a Trelliscope viewer or from
the analysis programming environment.

4 DESIGN AND IMPLEMENTATION OF TRELLISCOPE

The Trellis extension concepts introduced in the previous section
are quite straightforward – the idea is to use a distributed computing
interface to create the panels and leverage cognostics and sampling
to interactively view the panels. However, inserting these ideas into
an implementation that provides meaningful interactivity and an ef-
ficient workflow for a data analyst, while being interoperable with
a distributed storage and computing backend, is not trivial.

We have created an R implementation of the Trellis extensions,
called Trelliscope. As a system, Trelliscope builds upon D&R by
providing methods to apply panel and cognostic functions to di-
vided datasets to create displays with many panels, providing a
web-based viewer that allows users to interact with the panels, all
with minimal effort. For example, users can sort and filter millions
of panels using a wide variety of cognostics values. The filtered
panels are tiled on a screen where the user can then rapidly page
through them.

To support this at-scale flexibility for visualization, Trelliscope
takes as input a dataset divided into subsets using the divide()
method from the datadr D&R package [13]. This data can either
be a divided local data frame or a divided dataset on the Hadoop
distributed file system (HDFS). A prepanel function can be applied
to the data to determine axis limits for each panel. If limits are
not specified, scales are chosen such that the data fills the panel.
The analyst then specifies a plot function and a cognostics func-
tion to be applied to each subset and sends these to a command
makeDisplay(). This function applies the panel and cognostics
functions to each subset and stores the results. Trelliscope employs
R as a visualization system to create the plots and compute the cog-
nostics. By using the R-based interfaces of base R graphics, lattice,
or ggplot [20, 17], it is possible to create nearly any visual represen-
tation that a user requires. There are several options for how plots
and cognostics are stored, which are discussed in greater detail later
in Sections 4.1.1 and 4.1.2.

4.1 Hardware Architecture

Trelliscope can work on a single workstation operating on in-
memory data frames in R. When dealing with very large data sets,
Trelliscope can interface with scalable, distributed hardware archi-
tectures. For example, Figure 3 shows how Trelliscope can operate
seamlessly with very large datasets stored on HDFS. Our analysis
environment has been set up in a way similar to that of Figure 3,
except that the web server and cognostics server are both running
on the master node of the Hadoop cluster.

Figure 3: Distributed architecture of Trelliscope. Trelliscope is capable of

running on a single workstation, but has the ability to run in a distributed ar-

chitecture, one possibility of which is shown here. All analysis work is done on

the analyst’s workstation in R, and the D&R interface and Trelliscope R pack-

age coordinate communication with the other services. Other users, such as

subject-matter experts (SMEs) can access the viewer through a web browser.

4.1.1 Panel Rendering

We have investigated and implemented several options for panel
rendering and storage. There are two major classes of panel ren-
dering possibilities: 1) prerender and store raster images on disk,
HDFS, or MongoDB; 2) render panel images on-the-fly. In the lat-
ter case, pointers to each subset on disk are stored in the image’s
place and the images are rendered on-the-fly by reading the associ-
ated data when requested by the viewer.

The advantage of rendering on-the-fly is much quicker initial
creation of a display (only cognostics are computed), as well as
the ability to dynamically modify the panel function from within
the viewer. This particularly makes sense when there are millions
of subsets and the probability of viewing all subsets is very low, in
which case there is not much sense in precomputing all of them.
It typically is not expensive in terms of compute time or storage
space to compute cognostics for every subset, even when the num-
ber of subsets is in the millions. The only possible downside to the
render-on-the-fly approach is the case when the plot function is very
expensive to apply. In that case, it can be worth the time expense to
pre-generate the plots so that time isn’t spent on rendering during
the viewing process.

In our implementation, the viewer knows how to link to a panel
image or data through a special cognostic automatically computed
for each display called panelKey. Panel images or data can be
uniquely located through the combination of the display name and
panel key. Panel data or images stored on HDFS are stored as
key/value pair Hadoop mapfiles [19] with the key being the panel
key. The images or data can then be rapidly retrieved by key when
the viewer requests them. For panel images stored on disk, the files
are named according to panel key and are retrievable by name.

4.1.2 Cognostics Storage

Cognostics for a display can be stored either as an R data frame
on disk or as a collection in a database. The R data frame storage
approach is the simplest and does not require additional hardware
or software to be available aside from R on a workstation. The
potential drawback to this approach is that it does not scale well
beyond a few million subsets as the viewer must load the entire
cognostics data frame into memory to show the display.

Storing the cognostics in a database is another option that pro-
vides several benefits over a data frame approach. Most databases

will provide the ability to index columns of the database for fast
filtering, while not being required to be loaded into memory on the
web server. We have chosen MongoDB as a database option for
storing cognostics in our system. MongoDB scales very easily and
has a flexible aggregation framework that we plan to leverage to
perform different viewer-directed transformations and aggregations
of cognostics.

4.2 Creating a Display in R

Creating a display from an R instance is as simple as calling
the makeDisplay() function and specifying 1) a divided input
dataset, 2) a name for the display, and 3) a plot function for the pan-
els. Other optional settings (e.g., display group, axis limits, and a
cognostics function) can be specified as well. With respect to data
types, makeDisplay() can handle different classes of divided
data objects (e.g. local data frame or HDFS) and there are different
parameter defaults for how plots and cognostics are stored based on
the input type. Detailed documentation about all of the options with
examples is provided in the online documentation [14].

An example of creating a display could look like this:

makeDisplay(

data = gridCounts,

group = "exploratory",

name = "gridCounts",

desc = "Number of grid hits over time",

lims = list(x="free", y="free"),

plotFn = gcPlot,

cogFn = gcCog,

plotDim = list(height = 200, width = 800),

storage = "hdfsData")

Here, gridCounts is a divided HDFS data object. We have
created and tested a plot function gcPlot and a cognostics func-
tion gcCog that we are specifying to be applied to the each subset
of this data. We specify the x and y axis limits to be "free". The
storage option is "hdfsData", meaning that only cognostics will
be computed, including a panelKey that will be used to fetch data
and render on-the-fly in the viewer.

Prior to calling makeDisplay(), there are functions that aid
the analyst in specifying the panel axis limits. A prepanel()

function computes the axis limits for each subset and returns them.
The analyst can visualize the limits with a special R plot method
to get a feel for the distribution of the axis limit values. This can
be helpful in discovering subsets with large outlying values which
are sure to abound when the data is very large, and the analyst can
specify to trim outliers so that they do not inflate the axis limits of
all panels.

4.3 The Trelliscope Viewer

The Trelliscope viewer is a web application written in R using the
R Shiny [16] package. The server for the viewer can either run
on the user’s workstation or on a web server. The viewer is ac-
cessed through a web browser. Shiny provides communication from
the web browser to a live R session on the web server through a
WebSocket connection, providing an interactive user interface con-
trolled by JavaScript.

4.3.1 Panel View

The panel view is the main component of the viewer; Figure 4
shows the panel view for a display created during the analysis of
high intensity physics data where the user has specified to view six
panels per screen. Once the user has selected a display to view, the
panel view tiles the panels of the chosen display across the screen.
Left and right keys or the navigation buttons on the header bar pro-
vide simple navigation through the collection of panels.

By clicking the “view” button, the analyst can specify how many
panels are to be viewed in a single screen and can also specify

Figure 4: Screenshot of the panel view of the Trelliscope viewer for a display

created during the analysis of high intensity physics data.

whether cognostic values should be displayed alongside each panel.
There is also the “view” option to edit the panel plotting function
for displays that are not pre-rendered. This ability to dynamically
change what is being plotted is an additional benefit to not pre-
rendering the plots. The user can react to what is being seen in the
panels directly through the viewer (e.g. adding a reference line)
without going back to R to recreate the entire display. An example
screenshot of the view pane is shown in Figure 5.

Figure 5: Screenshot of view pane of the Trelliscope viewer. The panel plot

editing tab is visible.

4.3.2 Cognostics Interaction

A major feature of the Trelliscope viewer is the ability to sort and
filter panels according to the cognostics. Clicking the “Cog” button
brings up an interactive table that displays the cognostics variables.
Clicking column headers in the cognostics panel allows for sorting,
with multi-column sorting available with shift-click. In addition
to sorting, there are filters available for each variable. Regular ex-
pressions can be used to filter qualitative variables and numerical
ranges can be used to filter quantitative variables. A screenshot of
the cognostics pane for a display is shown in Figure 6. This figure
depicts an example of filtering and sorting where operations done
in the cognostics pane determine how the panels will be displayed
back in the panel view.

The cognostics pane also allows for interactive visual filtering
of cognostics for quantitative variables. Visual filtering is useful in

Figure 6: Screenshot of the cognostics pane in the Trelliscope viewer. In

addition to panelKey, 4 cognostics variables are visible. The time cognostic

has been range filtered and the filtered cognostics are sorted in reverse order

by the cognostic variable n.

that it can help the user identify regions of interest in the cognostics
space using the distribution of the cognostic as a visual cue. The
visual filters are created using d3.js [3].

For univariate filtering, the user can click the histograms at the
bottom of the cognostics table (see Figure 6). This activates the
histogram so that users can select a range of the histogram’s values;
a screenshot of this type of selection is shown in Figure 7.

Figure 7: Screenshot of the interactive univariate histogram cognostic filter in

the Trelliscope viewer.

Multivariate filtering is also possible. In the cognostics pane’s
“Multi Filter” section, the user can select two variables and bring
up an interactive scatterplot from which a bivariate range of values
can be identified to filter on. If there are more than 5,000 cognos-
tics, a hexagonal binning [4] is computed and plotted instead of
individual points. In the future, the viewer will support more than
two variables by using projection pursuit to project the multivariate
data onto a two-dimensional plane which the user can then interact
with. An example of bivariate filtering is shown in Figure 8.

4.3.3 Viewing related displays

It is very common to create multiple displays for the same division
of the data. When this is the case, it is useful to view multiple

Figure 8: Screenshot of the interactive bivariate cognostic filter in the Trellis-

cope viewer.

displays side-by-side for each subset. Trelliscope provides a way
to do this by keeping track of which displays were created from
the same division. By selecting the “Displays” button and selecting
“Related Displays” from the menu, the user can select any number
of related displays to be shown in the viewer.

5 APPLICATIONS

We have employed the principles behind Trelliscope in many
projects [12, 22]. Here, we discuss three recent projects that have
made direct use of the Trelliscope implementation. The main goal
of this paper is to introduce the Trelliscope methodology and im-
plementation, and therefore we are not able to go into details for
these applications. Our aim is to briefly illustrate the use of Trellis-
cope in real-world data analysis projects and demonstrate a few use
cases where it was an integral part of deep analysis.

5.1 Power Systems Data Cleaning and Event Detection

Sensors called Phasor Measurement Units (PMUs) provide power
grid operators with the status of the electric power grid at various
geographical locations at a very high frequency, 30-60 times per
second. Our analysis covered a data set of 1.5 years of data from 38
PMUs, a data set 2TB in size. The data consists of about 1.5 billion
time points with measurements from 38 PMU locations, where each
PMU records on average 14 measurements. These measurements
include the measured frequency at which the grid is operating as
well as several phase angle measurements.

The initial goal for our analysis was to build event detection al-
gorithms for specific grid activities of interest such as generator
trips and grid islanding. Our initial inquiry for the data was simply
to understand the behavior of each series over time. As all behav-
iors of interest are time-local, we chose a subsetting scheme of time
intervals that are short enough to be able to process and visualize
at high enough time resolution, but long enough to ensure that we
capture the time-local behavior within subsets. Based on these re-
quirements, we settled on 5 minute time intervals for subsetting.
There are about 158,000 subsets of the data, and when additionally
splitting out by location, there are about 6 million subsets.

We investigated the data using Trelliscope to create and view
time series plots of the subsets. Trelliscope provided a way for us
to have immediately at our fingertips a detailed view of any time
sequence of the 2TB dataset. Figure 9 shows two panels of one of
the time series displays created. The frequency of the grid across a
5-minute segment of time is shown, with a series for each of the 38
PMUs overplotted. The frequency reported for each PMU generally
follows the same trend over time.

We iteratively developed a collection of useful cognostics for
this display. Simple attributes that provide for temporal sorting and
filtering include the start time of the time interval and derived at-
tributes such as time of day, day of week, etc. Other simple at-
tributes include the number of missing values and number of times
the frequency exceeds a limit specified by power systems engi-
neers to be alarming or physically impossible. The time series vary
around a trend that changes over time. To capture that variabil-
ity, we specified a cognostic that removes the trend by fitting a lo-
cal polynomial regression to the time series and computes a robust
measure of the standard deviation of residual values of this fit. This
cognostic helps point us to subsets of the data where the variability
around the trend is unusually large or small. Another useful cog-
nostic we computed was the steepest slope of the fitted trend across
the 5-minute interval, which helped us investigate time periods of
extreme changes in frequency.

Sorting and filtering on cognostic variables would typically bring
subsets to our attention where other interesting behavior was occur-
ring not captured by, but correlated with, the cognostics. Some of
these behaviors were so rare that it is doubtful that they would have
been discovered without the ability to interactively look at the data
at the greatest level of detail. A large proportion of the behaviors we
uncovered were deemed to be erroneous records. The combination
of Trelliscope for detailed views with the analytical recombination
methods of D&R enabled us to identify, validate, and build algo-
rithms to remove these records from the data to focus on the event
detection. Many of the types of erroneous records had gone unno-
ticed in several prior analyses where tools like D&R and Trelliscope
were not available.

Another notable use-case of Trelliscope was in fine-tuning our
generator trip algorithm. Based on examples of known trips, we
were able to identify characteristics of a generator trip: all fre-
quency measurements experience a sharp sudden drop followed by
a gradual recovery. We constructed features from the data that cap-
tured these types of behaviors, but were not certain at which point
the combination of feature metrics constituted a bona fide generator
trip. We used the metrics to procure a candidate set of over 3000
time periods in which we thought a generator trip might have oc-
curred. This data constituted a new division with each subset con-
taining the data corresponding to the suspected generator trip. We
created a Trelliscope time series display of the data and presented
them to a domain expert to view and classify using the Trelliscope
viewer. Classification narrowed the list down to about 500 verified
trips and from this narrowed list we were able to create a rules-
based algorithm for detecting generator trips. A screenshot of the
Trelliscope viewer being used for this purpose is shown in Figure 9.

Figure 9: Trelliscope viewer being used to view and verify generator trips in a

power systems engineering application.

5.2 High Intensity Physics Particle Classification

In a high intensity physics application, we are looking at detect-
ing and differentiating between two sub-atomic particles, pion and

kaon, that are present during a single 100ns event from simulated
data that models a detector in the Belle II experiment [8]. Within a
single event, the numbers of these particles, their ratio to each other,
and the energy distribution of each particle type is key to identifying
inconsistencies in the Standard Model of particle physics.

This is an ongoing project, but our initial task, in anticipation of
real data becoming available in the coming years, is to see if it is
feasible to do kaon / pion classification from simulated data. We
are able to stochastically simulate data from a variety of possible
scenarios. From a high-level, the scenario of interest begins when
a kaon or pion particle hits the exterior of the detector and releases
a small array of photons into one of the detector’s quartz chamber
The particles themselves enter the detector at a known momentum,
P, and propagate photons radially at an unknown angle, θ . The par-
ticles bounce around the detector until they hit a sensor grid defined
by 64 × 8 channels (labeled 1, . . . , 512). We have simulated hun-
dreds of thousands of events from 168 combinations of P, θ , and
particle type (kaon/pion). The simulation reports the hit time and
location on the sensor. The complete realizations we are currently
studying generate about 12GB of data but we will soon be looking
at much larger collections of events. This is not nearly as much data
as in our previous example, but still enough that we cannot tackle
this data with traditional approaches.

In our first step, we divide the data into subsets for each combi-
nation of P, θ , and particle type in order to study the distribution
of hit times and locations on the sensor grid according to channel.
This results in a manageable 168 subsets. One Trelliscope display
we created on this division is a hexagonal binned scatterplot of time
vs. channel. An example of this for pions with cos(θ) = 0.1 and P
ranging from 1 to 5 (left to right, top to bottom) is seen in Figure 4.
Initially, cognostics for this display were simply specified to be the
values of P, θ , and particle type that define the subset. We viewed
the display in the Trelliscope viewer, choosing 2 panels per page
and sorting the panels first based on P, then θ , then particle type.
This allowed us to view the kaon and pion scatterplots side-by-side
for fixed P and θ , and then page through all 168 panels making vi-
sual comparisons as we progress through different levels of θ and
then P. Viewing in this way, we noticed that for small P, it is easy
to visually distinguish kaons and pions, but as P increases (from
P ≥ 3), the two begin to look very similar.

To further investigate the kaon / pion behavior, we partitioned the
data by time. More specifically, we choose one set of parameters,
P = 3 and cos(θ) = 0.1 to study and contrast kaon / pion behavior
in detail. An initial look at this case over time led us to desire a
finer time resolution and hence more sample runs. We generated 1
million sample runs for this case and divided the data up into 3739
subsets according to equal-width log time intervals. One display
we created for this data is a heat map of the hit distribution within
each time chunk for each of kaon and pion, plotted according to
the actual grid layout of the sensor. An example of this display can
be seen in the background of Figure 1. For this display, we com-
puted cognostics for the start time of the interval, the number of
kaon hits, the number of pion hits, and the difference between kaon
and pion hits. Our first view of this display was simply quickly
paging through the panels in time order. This view helped us notice
that there are time periods in which a clear signal is present on the
sensor, which moves around on the sensor over time. The activity
comes in bursts, and the signal is only present when the activity is
high, verified by looking at the scatterplot of the cognostics of num-
ber of hits vs. time (see Figure 8). Viewing this display also gave
us a better view of the differences between kaon and pion and we
were able to see many times where the signal was visibly very dif-
ferent between the two. Based on our observations, we constructed
a simple Bayes classifier for any new sample. The sample hits are
matched to the time partitions of our time-divided data, and then
based on the distribution of the training data in that time period,

we compute the probability that the point is a kaon or pion given
its hit location on the grid. We found that if we weight these clas-
sifications based on the time regions where the difference between
kaon and pion is most pronounced, we can get accurate classifica-
tion in the 90% range. While here we have omitted several of the
iterations and steps in this process, Trelliscope and the datadr

package played a crucial role in doing this analysis effectively in a
very short time.

5.3 Proteomics Biomarker Discovery

The goal of a proteomics research problem we have been in-
volved with is to extract meaningful signatures of biological pro-
cesses from peptide and protein abundance data. The process of
biomarker discovery and characterization provides opportunities
both for purely statistical and expert knowledge-based approaches.
In this project we investigated the use of Trelliscope in an effort to
improve integration of the two.

We used proteomics data from a mouse model of chronic ob-
structive pulmonary disease (COPD) that involves deletion of
a gene, ADA. Animals with ADA+/- are controls (no disease)
ADA+/+ are diseased. We analyzed data from plasma samples
of control and disease groups over time to study biomarkers for
COPD. The abundance data underwent an extensive preprocessing
procedure, resulting in data for 2,927 peptides which were rolled up
into 414 proteins. Statistical and functional clustering tools were
applied to the data, forming potential groups of biomarkers.

We created a visual representation of the data in Trelliscope to
present to a domain expert. We divided the protein data into subsets
by protein and likewise for the peptide data. The panel function for
each protein or peptide displays the abundance over time by disease
and control groups. An example of two panels from the protein dis-
play is shown in Figure 10. The dots represent the abundances for
each subject, while the crosshairs and lines denote the mean abun-
dance at each time point for each group and its progression over
time. The top and bottom sets of boxes colored in gray and green
indicate whether a statistically significant difference exists between
the two groups at each time point, the top row for a G-test (test for
presence/absence) and the bottom for a t-test for difference between
group means [18]. A statistically significant positive difference be-
tween control and disease for the given test at the given time point,
gray means insignificant, and red means a statistically significant
negative difference. These boxes helped create a visual cue that can
be rapidly digested while paging through many panels.

We computed several cognostics for each panel. Some simple
statistical cognostics derived from the data in each subset include
the following: number of total, ADA-/-, and ADA+/- observations
in the panel, average difference between ADA+/- and ADA-/- be-
fore and after day 34, t-test and g-test p-values on each day, slope
of ADA-/- and ADA+/- abundance over time. We merged external
domain-specific data with our subsets to obtain cognostics provid-
ing more information about the protein, including protein annota-
tion and function, cluster assignment from hierarchical clustering,
enriched functional cluster assignment and gene functional classi-
fication from DAVID [7], and assigned generalized biological pro-
cess from GO [1].

Using these cognsotics, data analysts and domain experts were
able to interact with the panels in many ways. Panels were sorted
and filtered on proteins of interest, protein functions of interest, etc.
to help the domain expert understand what the data had to say. Pan-
els were also sorted by statistical significance trends of interest,
such as abundances that are not significantly different in the be-
ginning and become significant over time. Another interaction was
filtering the panels based on the clustering results and determining
if the resulting protein groupings made any sense, as well as trying
to determine if there was anything apparent in the data that would
explain and provide some interpretability of the protein groupings

c
o

n
c
e

n
tr

a
ti
o

n

4
5

6
7

t + + / / /

G / / / / /

AZI1_MOUSEAZI1_MOUSE

ADA-/- ADA+/-

day

4
5

6
7

26 30 34 38 42

t / / / / /

G + / + / /

DPOD1_MOUSEDPOD1_MOUSE

Figure 10: Two panels from a display of protein abundance vs. time for dis-

ease (ADA+/-) and control (ADA-/-) groups.

selected.
This analysis facilitated by Trelliscope provided valuable insight

into the data for the domain experts in several key aspects. Visual-
ization of the peptides (portions of the whole protein) contributing
to quantitation of key proteins was evaluated. In several cases it
was apparent that there were two trends in the peptides mapping to
one protein indicating that the mapping was incorrect. Grouping of
the proteins into functional groups was used to identify subgroups
for incorporation into a classification algorithm that allowed identi-
fication of improved biosignatures of disease in the COPD samples.

The data for this example is by far the smallest (less than 10MB)
and illustrates the utility of Trelliscope when the data is not large.
Detailed views of the data still required panels for thousands of
subsets and thus benefitted from the interactivity of Trelliscope.

6 DISCUSSION AND FUTURE WORK

Trelliscope provides a framework for scalable detailed, interactive
visualization of large complex data. It has been developed out of
necessity from analysis of many real-world large complex datasets
and has proven to be immensely useful.

Trelliscope is a research effort that to this point has been mainly
focused on the architecture and practicality of a scalable Trellis Dis-
play system. In the future, we would like to give much more atten-
tion to the design and features of the viewer.

The main focus of future work on the viewer will be sampling
and cognostics. We envision an interface that allows the analyst to
specify different sampling schemes of the panels. We also antic-
ipate new cognostic types that provide new ways to interact with
the data. One of these is relational cognostics, where the cognostic
for one panel is a reference to another panel or panels either in the
same display or in other displays. Such cognostics could be dis-
played and interacted with in the viewer through a network graph.

We also envision more options with how the quantitative and
qualitative cognostics are interacted with. This would include more
complex visual interactions with multiple cognostic variables.

We have given consideration to the idea of using more modern
web-based technologies to create and render the panel images. This
could bring a new level of interactivity. However, we feel there is
sufficient power (and ease of use) for the analyst by allowing them
to stick to tools they are familiar with to create the panel-level plots
while still being able to have rich interactions with these plots at the
cognostics level.

ACKNOWLEDGEMENTS

This work was supported in part by the Pacific Northwest Na-
tional Laboratory Signature Discovery Initiative, Future Power Grid
Initiative, and a grant “D&R for Large Complex Data” from the
DARPA XDATA Program.

REFERENCES

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.

Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al.

Gene ontology: tool for the unification of biology. Nature genetics,

25(1):25–29, 2000.

[2] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and

control of trellis display. Journal of Computational and Graphical

Statistics, 5(2):123–155, 1996.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-

ments. Visualization and Computer Graphics, IEEE Transactions on,

17(12):2301–2309, 2011.

[4] D. B. Carr, R. J. Littlefield, W. Nicholson, and J. Littlefield. Scatter-

plot matrix techniques for large n. Journal of the American Statistical

Association, 82(398):424–436, 1987.

[5] W. Cleveland. The Collected Works of John W. Tukey: Graphics 1965-

1985, volume 5. Chapman & Hall/CRC, 1988.

[6] W. S. Cleveland. Visualizing Data. Hobart Press, Chicago, 1993.

[7] G. Dennis Jr, B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C.

Lane, R. A. Lempicki, et al. David: database for annotation, visual-

ization, and integrated discovery. Genome Biol, 4(5):P3, 2003.

[8] T. et al. Belle II Technical Design Report, 2010.

[9] S. Guha. Computing Environment for the Statistical Analysis of Large

and Complex Data. PhD thesis, Purdue University Department of

Statistics, 2010.

[10] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, and W. S. Cleveland.

Large complex data: divide and recombine (d&r) with rhipe. Stat,

1(1):53–67, 2012.

[11] S. Guha, R. P. Hafen, P. Kidwell, and W. S.Cleveland. Visualization

Databases for the Analysis of Large Complex Datasets. Journal of

Machine Learning Research, 5:193–200, 2009.

[12] S. Guha, P. Kidwell, A. Barthur, W. S. Cleveland, J. Gerth, and

C. Bullard. A Streaming Statistical Algorithm for Detection of SSH

Keystroke Packets in TCP Connections. In R. K. Wood and R. F. Dell,

editors, Operations Research, Computing, and Homeland Defense. In-

stitute for Operations Research and Management Sciences, 2011.

[13] R. Hafen. “datadr” github documentation.

http://hafen.github.io/datadr/. Accessed: 2013-05-11.

[14] R. Hafen. “trelliscope” github documentation.

http://hafen.github.io/trelliscope/. Accessed: 2013-05-11.

[15] R Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2012.

ISBN 3-900051-07-0.

[16] RStudio and Inc. shiny: Web Application Framework for R, 2013. R

package version 0.5.0.

[17] D. Sarkar. Lattice: multivariate data visualization with R. Springer

Verlag, 2008.

[18] B.-J. M. Webb-Robertson, L. A. McCue, K. M. Waters, M. M. Matzke,

J. M. Jacobs, T. O. Metz, S. M. Varnum, and J. G. Pounds. Combined

statistical analyses of peptide intensities and peptide occurrences im-

proves identification of significant peptides from ms-based proteomics

data. Journal of proteome research, 9(11):5748–5756, 2010.

[19] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[20] H. Wickham. ggplot2: elegant graphics for data analysis. Springer

Publishing Company, Incorporated, 2009.

[21] L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual

analytics: Interactive exploration guided by pairwise views of point

distributions. Visualization and Computer Graphics, IEEE Transac-

tions on, 12(6):1363–1372, 2006.

[22] B. Xi, H. Chen, W. S. Cleveland, and T. Telkamp. Statistical Anal-

ysis and Modeling of Internet VoIP Traffic for Network Engineering.

Electronic Journal of Statistics, 4:58–116, 2010.

